Vascular endothelial growth factor expression in peritoneal mesothelial cells undergoing transdifferentiation.

نویسندگان

  • Jing Zhang
  • Kook-Hwan Oh
  • Hui Xu
  • Peter J Margetts
چکیده

OBJECTIVE To analyze gene expression of localized peritoneal tissue structures in a rodent model of peritoneal fibrosis. METHODS Female Sprague Dawley rats were treated with an intraperitoneal injection of an adenovirus expressing active transforming growth factor-beta or control adenovirus. Four and 7 days after infection, animals were sacrificed and frozen sections of parietal peritoneum were subjected to immunofluorescence-aided laser capture microdissection in order to isolate vascular, mesothelial, and submesothelial structures. RNA was extracted from microdissected tissue and gene expression was analyzed by quantitative reverse-transcript polymerase chain reaction. We analyzed genes involved in angiogenesis, epithelial-to-mesenchymal transdifferentiation, and fibrosis. Vascular endothelial growth factor and alpha-smooth muscle actin expression was analyzed with immunohistochemistry of formalin-fixed tissue. RESULTS Transforming growth factor-beta(1) induced expression of Snail and alpha-smooth muscle actin genes in the peritoneal mesothelium. This same cell population also demonstrated increased gene expression of vascular endothelial growth factor. The distribution of this growth factor was confirmed by immunohistochemistry. The fibrogenic growth factor, connective tissue growth factor, was also strongly induced in the peritoneal mesothelium. CONCLUSIONS Using immunofluorescence-aided laser capture microdissection, we were able to study gene expression in subcompartments of the peritoneal tissue. We demonstrated that mesothelial cells exhibiting mesenchymal transdifferentiation are associated with increased expression of genes associated with fibrosis and angiogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of vascular endothelial growth factor, fibroblast growth factor, and lactate dehydrogenase by human peritoneal mesothelial cells in solutions with lactate or bicarbonate or both.

In patients on long-term continuous ambulatory peritoneal dialysis, the efficiency of dialysis declines because of peritoneal neovascularization and loss of peritoneal mesothelial cells. In this study, we investigated the influence of lactate and bicarbonate in peritoneal dialysis fluid on such changes of the peritoneum. We studied the production of vascular endothelial growth factor (VEGF) and...

متن کامل

Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uraemia.

BACKGROUND Uraemia is associated with fibrosis of the peritoneal membrane, even prior to the start of peritoneal dialysis. Increased carbonyl stress and the resultant formation of advanced glycation end-products (AGEs) are potentially involved. The interaction of AGEs with their cell surface receptor for AGE (RAGE) induces sustained cellular activation, including the production of the fibrogeni...

متن کامل

P-182: The Role of Vascular Endothelial Growth Factor Gene Expression in Patients with the History of Endometriosis

Background: Endometriosis is the presence of endometrium- like tissue in sites outside the uterine cavity, primarily on the pelvic peritoneum and ovaries. Ectopic endometrium for replacement and growth require to blood supply. Vascular endothelial growth factor (VEGF) is one of the most important intermediate of locality angiogenesis that product by monocytes and macrophages. This study evaluat...

متن کامل

Methylglyoxal induces peritoneal thickening by mesenchymal-like mesothelial cells in rats.

BACKGROUND The epithelial-to-mesenchymal transition (EMT) of mesothelial cells was observed in patients on peritoneal dialysis and may be involved in peritoneal thickening. Conventional peritoneal dialysis fluids (PDFs) that contain glucose degradation products (GDPs), such as methylglyoxal (MGO) and formaldehyde (FA), are bioincompatible. The aim of this study is to analyse the participation o...

متن کامل

Functional Relevance of the Switch of VEGF Receptors/Co-Receptors during Peritoneal Dialysis-Induced Mesothelial to Mesenchymal Transition

Vascular endothelial growth factor (VEGF) is up-regulated during mesothelial to mesenchymal transition (MMT) and has been associated with peritoneal membrane dysfunction in peritoneal dialysis (PD) patients. It has been shown that normal and malignant mesothelial cells (MCs) express VEGF receptors (VEGFRs) and co-receptors and that VEGF is an autocrine growth factor for mesothelioma. Hence, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2008